Consider a one-dimensional motion of a particle with total energy E. There are four regions A, B, C and D in which the relation between potential energy V, kinetic energy (K) and total energy E is as given below

Region A : V > ERegion B: V < E**Region C**: K < ERegion D: V > E

State with reason in each case whether a particle can be found in the given region or not.

 $V > E \Rightarrow E - V < 0$

...(i)

Ans. We know that

Total energy
$$E = PE + KE$$

$$\Rightarrow F = V + K$$

For region A Given,
$$V > E$$
, From Eq. (i)

For region A Given,
$$V > E$$
, From Eq. (i)
$$K = E - V$$

as Hence, K < 0, this is not possible.

For region B Given, $V < E \Rightarrow E - V > 0$

This is possible because total energy can be greater than PE (V). For region C Given, $K > E \Rightarrow K - E > 0$

from Eq. (i) **PE** = V = E - K < 0

Which is possible, because PE can be negative. For region D Given, V > K

This is possible because for a system PE (V) may be greater than KE (K).